q*是什么数
q*是正有理数集。
有理数是整数和分数的统称,是整数和分数的集合。
正有理数指的除了负数、0、无理数的数字,正有理数能精确地表示为两个整数之比。
正有理数还被分为正整数和正分数。
无限循环小数是有理数。
与有理数相对的是无理数,也称为无限不循环小数。
若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
数学集合中q,n,z表示的意义是什么意思
Q表示有理数集
N表示非负整数集{0,1,2,3……}
Z表示整数集合{-1,0,1……}
集合中其他字母的含义:
R:实数集合(包括有理数和无理数)
N*/N+:正整数集合{1,2,3,……}
C:复数集合
∅ :空集(不含有任何元素的集合)
Q+:正有理数集合
Q-:负有理数集合
R+:正实数集合
R-:负实数集合

扩展资料集合的三大特性
1、互异性
集合的互异性是指“对于一个给定的集合,集合中的元素是互异的”,就是说,“对于一个给定的集合,它的任何两个元素都是不同的”。因此,如果把两个集合{1,2,3,4}、{3,4,5,6,7}的元素合并在一起构成的一个新集合只有1,2,3,4,5,6,7这七个元素,不能写成{1,2,3,4,3,4,5,6,7}。
2、确定性
集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。可从两个方面理解:一方面是从元素的意义上可以理解为“对于一个给定的集合,集合中的元素是确定的”;
另一方面是从元素与集合的关系上可以理解为元素与集合只能是属于和不属于的关系,也就是设A是一个给定的集合,a是某一具体对象,则对象a或者是A中的元素,即a∈A,或者不是A中的元素,即a∈A,只有这两种情形,两种情况必有一种且只有一种成立,没有第三种情形发生。
3、无序性
集合的无序性是指表示一个集合时,构成这个集合的元素是无序的,例如对于由1,2,3,4,5这五个数组成的集合,我们可以记为{1,2,3,4,5},也可以记为{3,1,2,5,4}。
q是什么数集
q是有理数集合。有理数集可以用大写黑正体符号q代表。但q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
数学中的英文分别代表什么
Z表示集合中的整数集
Q表示有理数集
R表示实数集
N表示集合中的自然数集
N+表示正整数集

拓展资料:
符号法
有些集合可以用一些特殊符号表示,比如:
N:非负整数集合或自然数集合{0,1,2,3,…}
N*或N+:正整数集合{1,2,3,…}
Z:整数集合{…,-1,0,1,…}
Q:有理数集合
Q+:正有理数集合
Q-:负有理数集合
R:实数集合(包括有理数和无理数)
R+:正实数集合
R-:负实数集合
C:复数集合
∅ :空集(不含有任何元素的集合)
数学中的字母符号大全
Q是有理数集,R是实数集,Z是整数集,N自然数集,C是复数集。你确定是问的U?
以上就是关于q*是什么数,数学集合中q,n,z表示的意义是什么意思的全部内容,以及q*是什么数的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。