任意两个行列式都可以相乘吗?
任意两个行列式都可以相乘。因为行列式是数或式子,所以它们任何时候都可以乘。行列式(determinant)在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作det(A)或|A|。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
两个5阶行列式相乘得到的是一个数吗
可以相乘,因为行列式是数或式子,所以 它们任何时候都可以乘。
两个行列式相乘是不是要分别算出数值再相乘?一般情况下是这样。如果有一个行列式等于0,则另一个就可以不算,结果就是0。
两个行列式相乘,可以分别算出数值再相乘
如果是同阶行列式,也可以先用里面的矩阵相乘,得到1个新矩阵,然后求此矩阵的行列式,即可
行列式为啥等于特征值的乘积
如果A和B是同阶方阵,那么A*B的行列式就等于A的行列式乘以B的行列式。一个最显然的例子是A乘以A逆的行列式等于1,于是A的行列式与A逆的行列式互为倒数(A要可逆)。
行列式相乘规则
行列式的一个重要性质,设D1=|aij|,D2=|bij|是数域P上的两个n阶行列式,则D1与D2的乘积D1D2=|cij|,其中cij=ai1b1j+ai2b2j+……+ainbnj(i,j=1,2,…,n),即乘积D1D2中的第i行、第j列的元素cij为D1的第i行元素与D2的第j列对应元素乘积的和。此相乘规则简称行乘列。
行列式性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
④行列式A中两行(或列)互换,其结果等于-A。⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
相关规则
乘法结合律:(AB)C=A(BC)
乘法左分配律:(A+B)C=AC+BC
乘法右分配律:C(A+B)=CA+CB
对数乘的结合性k(AB)=(kA)B=A(kB)
转置(AB)T=BTAT
矩阵乘法在以下两种情况下满足交换律。
AA=AA,A和伴随矩阵相乘满足交换律。
AE=EA,A和单位矩阵或数量矩阵满足交换律。
两个行列式相乘怎么算举例
两个行列式相乘,先将前面矩阵的每一行分别与后面矩阵的列相乘作为结果矩阵的行列。当矩阵A的列数等于矩阵B的行数时,A与B可以相乘。矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。

乘法结合律: (AB)C=A(BC)
乘法左分配律:(A+B)C=AC+BC
乘法右分配律:C(A+B)=CA+CB
对数乘的结合性k(AB)=(kA)B=A(kB)
转置 (AB)T=BTAT
矩阵乘法在以下两种情况下满足交换律。
AA*=A*A,A和伴随矩阵相乘满足交换律。
AE=EA,A和单位矩阵或数量矩阵满足交换律。
行列式是什么意思:

若干数字组成的一个方阵,它的值是按下述方式可能求得的所有不同的积的代数和,求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。
两个行列式相乘,先将前面矩阵的每一行分别与后面矩阵的列相乘作为结果矩阵的行列。当矩阵A的列数等于矩阵B的行数时,A与B可以相乘。矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
以上就是关于任意两个行列式都可以相乘,两个5阶行列式相乘得到的是一个数吗的全部内容,以及任意两个行列式都可以相乘吗?的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。