导数为零的点叫什么点
导数为0是驻点,阶可能是拐点,要看左右一阶的正负情况,同正同负就不是拐点了。
导数(Derivative)是微积分中的重要基础概念。
当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
一个函数存在导数时,称这个函数可导或者可微分。
可导的函数一定连续。
不连续的函数一定不可导。
导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。
导数为0的点是驻点吗
不是,导数为0的点是驻点。
在某点导数不存在,有三种可能:
1、函数图像在此点有尖角。尖角两侧的斜率不一样,所以不可导。
2、函数图像在此点中断,不但中断,而且两侧的极限也不相等,甚至是根本不存在。
3、函数图像既连续,又光滑,但是该点的切线垂直于x轴,我们也说该点导数不存在。
导数存在的充要条件:函数导数存在的充要条件是在该点左右导数均存在且相等。
设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导。


扩展资料
相关知识:
临界点(critical point):导数为零或者不存在的点。
驻点(stationary point):导数为零的点。
极值点(relative extrema):局部最大值或者最小值。该点前后一阶导符号发生变化。一阶导由大于零变为小于零,为极大值;由小于零变为大于零,为极小值。
1、临界点包括驻点和导数不存在的点。
2、极值点要在临界点里找,临界点不一定为极值点。比如y=x^3,x=0处为临界点,但不是极值点。
3、判断临界点是否为极值点的唯一原则——在该点前后函数一阶导符号(即函数单调性)是否发生变化。
4、临界点、驻点和极值点与函数的一阶导有关,拐点与函数的二阶导有关,拐点前后二阶导符号发生变化。
数学导数零点问题
解析:
导数的零点就是令导数等于0时,自变量x的取值!
也就是极值点!
有什么不明白的可以继续追问,望采纳!
驻点与拐点的区别与联系
函数的极值点、驻点和拐点这些概念很多同学和老师都容易混淆。如何正确认识极值点、驻点、拐点其主要依据是定义及相关理解,只有理解透定义域定理,进而找到他们的本质差别,才不至于混为一谈。
驻点、极值点、拐点是微积分中不能绕过的知识点,要想完全掌握必须抓住核心定义,而不是去死记硬背一些推论。理解本质才能应对千变万化的题目。
1.核心概念
驻点:是函数的一阶导数为0地点,另外驻点也称为稳定点,临界点
例如:y=x3,则f’(x)=3x2,令f’(x)=0,解得x=0,则x=0是函数y=x3地驻点
极值点:是函数的单调性发生变化的点,或是函数的局部极大值或极小值点(或者说当函数存在导数时,函数的极值点是其导函数的变号零点)
例如:y=x2,如图在x=0处,函数的单调性发生了变化,或者说x=0附近的区域,f(0)取得极小值,这两个均说明x=0是函数y=x2的极值点

备注:我们在求函数的极值时,通常令f(x)的一阶导数为0,但一阶导数为0地点不一定是极值点,例如y=x3,则f’(x)=3x2,令f’(x)=0,解得x=0,这时x=0不是函数的极值点,因为该函数在x=0处的单调性没有发生变化。
拐点:是函数二阶导数为0且三阶导数不为0地点
例如:
我们以f(x)=x3为例来看看什么是拐点,如图:在(0,0)处函数的凹凸性发生了变化,我们知道二阶导为正,原函数是凸函数,二阶导为负,原函数的凹函数。该函数是先凹后凸,因此(0,0)是函数的拐点。

备注:在拐点处,函数的凹凸性发生了改变,当二阶导数大于0,说明函数图像下凹;如果二阶导数小于0,说明函数图象上凸。
2.区别和联系
① 零点,驻点,极值点指的都是函数y=f(x)的一个横坐标x0,而拐点指的是函数y=f(x)图像上的一个点(x0,f(x0))
② 驻点和极值点:可导函数f(x)的极值点必定是它的驻点,但是反过来,函数的驻点却不一定是极值点。例如上面举例的y=x3,x=0是函数f(x)的驻点,但它不是极值点。此外,函数在它的一阶导数不存在时,也可能取得极值,例如y=|x|,在x=0处导数不存在,但极值点是x=0,具体可见下面的图像。

③ 驻点和极值点与函数的一阶导数有关,拐点与函数的二阶导数和三阶导数有关。
3.内容归纳

以上就是关于导数为0的点是驻点吗,导数为零的点叫什么点的全部内容,以及导数为零的点叫什么点的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。