抛物线的焦点是什么
抛物线的焦点是构建曲线的特殊点,平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线,其中定点叫抛物线的焦点,抛物线是椭圆的极限情况,其中的一个焦点是无限远的点。
抛物线上任意一点与焦点之间的所连线段的长度,叫做焦半径;过抛物线焦点的直线被抛物线截得的线段叫做焦点弦。
抛物线的焦点是什么
抛物线方程为:y^2=2px,焦点坐标为(p/2,0),
准线方程为x=-p/2,
故抛物线焦点到准线的距离为p/2-(-p/2)=p.
什么是抛物线的焦点弦
1、抛物线内与准线距离相等的点叫做焦点。
2、平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。
3、抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它在几何光学和力学中有重要的用处。抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。
什么是抛物线的焦点弦
抛物线上点到焦点的距离与到准线的距离的比值为1。也可以说抛物线上的点到焦点的距离(焦半径)等于到准线的距离。用一个符号e来表示抛物线上点到焦点的距离与到准线的距离,即e=1。当然它也有一个中文名字,叫做:离心率。

抛物线特点:
1、抛物线是轴对称图形。对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P,当b=0时,抛物线的对称轴是y轴(即直线x=0)。
2、抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3、二次项系数a决定抛物线的开口方向和大小。
抛物线的焦点是什么
抛物线的焦点是构建曲线的特殊点。
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线,其中定点叫抛物线的焦点。抛物线是椭圆的极限情况,其中的一个焦点是无限远的点。

抛物线的特点
在抛物线y^2=2px中,焦点是(p/2,0),准线的方程是x= -p/2,离心率e=1,范围:x≥0。
在抛物线y^2= -2px 中,焦点是( -p/2,0),准线的方程是x=p/2,离心率e=1,范围:x≤0。
在抛物线x^2=2py 中,焦点是(0,p/2),准线的方程是y= -p/2,离心率e=1,范围:y≥0。
在抛物线x^2= -2py中,焦点是(0,-p/2),准线的方程是y=p/2,离心率e=1,范围:y≤0。
以上就是关于抛物线的焦点是什么的全部内容,以及抛物线的焦点是什么的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。