有原函数的一定是连续函数吗?
有原函数的一定是连续函数。只要存在原函数,则原函数一定是可导函数,因此一定是连续的。原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
连续函数是指函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。
为什么有原函数的函数不一定连续呢
呃~首先这个问题,问得比较奇怪“有原函数的函数不一定连续”,条件是有原函数的函数,结论是该函数(有原函数的那个函数,即导函数)不一定连续,不够严谨,概念模糊;然后第一次回答这样推不正确,可导函数连续对的,第二句话“在定义域内连续”呃,必然的,最后一句话大错了,小区间存在怎么可以推出在大区间存在呢~教科书上反例很多;第二次问“只要有原函数的函数,在定义域内一定连续”,这个定义域是指原函数还是导函数的?
看到最后一次回答才明白你想问的,相当于问“原函数连续(在定义域内),其导函数不一定连续(在原函数的定义域内)”~而导函数不一定连续有两种情况,(1)不一定处处可导,定义域为原函数真子集(2)处处可导但,但导函数有间断点;用反证法很容易证出来,“原函数连续,其导函数一定连续”:(1)y=|x|连续,但其导函数在x=0处无定义域;(2)分段函数y=√(1-x^2)(-1≤x≤1),y=f(x) 其他,原函数连续但其导函数在x=1,-1上间断。(1)和(2)任意一个例子都可以作为原命题的反例~从而可得“原函数连续(在定义域内),其导函数不一定连续(在原函数的定义域内)”。
连续函数一定有原函数吗
一般来说,连续函数必存在原函数.
而存在原函数的函数不一定要求是连续函数.
比如说存在第一类间断点(可去间断点、跳跃间断点)的函数.
原函数就是对函数进行一次积分,存在必然是无穷个.
为什么原函数一定要是连续的函数
因为原函数存在定理为:若f(x)在[a,b]上连续,则必存在原函数。此条件为充分条件,而非必要条件。即若f(x)存在原函数,不能推出f(x)在[a,b]上连续。由于初等函数在有定义的区间上都是连续的,故初等在其定义区间上都有原函数。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
扩展资料:
原函数存在与间断点的关系:
设F'(x)=f(x),f(x)在x=x0处不连续,则x0必为第二类间断点(对于考研数学,只能是第二类振荡间断点),而非第一类间断点或第二类无穷间断点。
当f(x)存在第二类振荡间断点时,不能确定是否存在原函数,这种情况下结论与f(x)的表达式有关。
原函数存在的三个结论:
如果f(x)连续,则一定存在原函数;
如果f(x)不连续,有第一类可去、跳跃间断点或第二类无穷间断点,那么包含此间断点的区间内,一定不存在原函数;
如果f(x)不连续,有第二类振荡间断点,那么包含此间断点的区间内,原函数可能存在,也可能不存在。
存在原函数的函数一定连续吗?
存在原函数的函数不一定连续.因为分段函数也有原函数,比如像X=Y(X≠1) 的原函数就是X=Y(X≠1)
以上就是关于有原函数的一定是连续函数,为什么有原函数的函数不一定连续呢的全部内容,以及有原函数的一定是连续函数吗?的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。