数学中什么是方阵
指行数及列数皆相同的矩阵。
在数学中,矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵,这一概念由19世纪英国数学家凯利首先提出。
矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。
什么叫方阵 关于方阵的意思介绍图片
1、方阵是古代军队作战时采用的一种队形,是把军队在野外开阔地上排列成方形阵式。远古方阵由前军、中军和后军相互嵌套排列而成,方阵平面呈现“回”字形状,反映出远古观念中的一种政治地理结构,来源于“天圆地方”的宇宙观。
2、在数学中,n×n阶矩阵被称为n阶方阵,即方阵就是行数与列数一样多的矩阵。
方阵是指行数与列数一样多的矩阵吗
n×n阶矩阵被称为n阶方阵,即方阵就是行数与列数一样多的矩阵。
方阵其实就是特殊的矩阵,当矩阵的行数与列数相等的时候,我们可以称它为方阵,比如说:某一矩阵的行数与列数都是5,我们可以叫它为5阶方阵。

扩展资料:
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。作为解决线性方程的工具,矩阵也有不短的历史。
成书最早在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。
矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。
数学什么是方阵和矩阵
方阵 aquare matrix
方阵的逆矩阵 inverse of a square matrix
方阵的永久性 permanent of a square matrix
方阵列 square array
m*n的矩阵,如果m=n就是方阵
加减就是对应的元素的加减
乘法比较复杂,一行与一列的对应元素分别相乘,求和得到一个元素……
方阵是什么意思
方阵其实就是特殊的矩阵
1、亦作"方阵"。

2、方形之军阵。古代阵法有方、圆、雁行、钩行等多种。
3、指麻将牌局。四人对局、开局前、每人理十七或十八墩构成方形故称。
4、数学中,指行数及列数皆相同的矩阵,即方块矩阵。战术中,可以指希腊方阵、罗马方阵(鱼鳞阵)。军事中,古希腊的马其顿方阵和美国海军的Mk15/16 方阵近迫武器系统。
1、 方阵就是特殊的矩阵,当矩阵的行数与列数相等的时候,称它为方阵。
2、矩阵(Matrix):一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
3、元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵 。

矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。
在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
以上就是关于数学中什么是方阵,什么叫方阵 关于方阵的意思介绍图片的全部内容,以及数学中什么是方阵的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【易百科】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。